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The simple spring-mass-dmper system shown i n  Fig. 1 i s  considered 

as a shock i so la t ing  system. 
s t i f fness ,  k, and the darnping coefficient, C, f o r  optimum performance. 
Specif ical ly  t h i s  note reports  the successful development of a capabi l i ty  
of solving both of the following two problems: 

The problem i s  t o  determine the spring 

1) The "rat t le  space 1' i s  limited by external considerations 
and the problem i s  t o  choose the spring-damper combination 
such that  the maximum acceleration i s  a minimum and such 
that the maximum re l a t ive  displacement i s  consistent with 
-the '?rat t le  space r 1  

2)  The s t f r a g i l i t y  l e v e l "  of  the mounted un i t  i s  known and the 
problem i s  t o  choose the  spring-dainper combination such tha t  
the rr,Utimm re la t ive  displacement i s  a minimum while the 
maximum acceleration i s  less than the f r a g i l i t y  l eve l  of the 
uni t .  

The capabi l i ty  reported here solves these two problems when the 
shock environfiient consis ts  of a single shock pulse 01- severa l  shock 
pulse s . A q ) i o \ ?  

INTRODUCTION 

There are many design problems f o r  which there are n m r o u s  
solut ions in  the sense of f u l f i l l i n g  a given set of requirewnts  and 
specifications. I n  these problems there i s  often a cr i te r ion  such as 
weight, cost, se rv iceabi l i ty  and appearance by which one acceptable 
design may be judeed be t t e r  than another. 
be expressed as a function of the design parameters the selection of 
the  - bes t  possible design becomes conceivable. I n  many problems t h i s  
optimization may be attacked i n  an analyt ical  fashion using ma-min 
techniques. 

If t h i s  merit cr i ter ior ,  can 

However, i n  a large class of problems, due t o  the nature 
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of the m e r i t  function and/or the constraints  placed on the system by 
the design requirements, it i s  not feasible o r  not possible t o  use 
closed form ana ly t ica l  techniques. This may zvsult f o r  example from 
the fac t  tha t  the merit rffunctionlf  i s  a function only in the sense 
t h a t  it is  a 8 k u l . e  11 f o r  determining the  merit associated with a given 
design. I n  t h i s  s i tua t ion  the function may be thought of as a 1KIack 
box" into which are pub the  values of the parameters representing a 
given design and out of which comes the value of the merit f o r  that 
designo The box may contain such things as d i f fe ren t ia l  equations, 
a modal superposition analysis, an analogue computer and so on. 
i f  the mrit function is simple, the constrajning re la t ions  of the 
design requirements may be of a nature that precludes the  use of an 
analyt ical  approach. 

Even 

Several problems of this type have been solved, These have been 
problems f o r  which the techno og 

of an elementary problem involving a dynamics technology. 

s been the mechanics of deformable 
s t ructures  under s t a t i c  load t19'93. T h i s  note presents the  solution 

Consider a simple springarass-dartlper system with one degree of 
freedom as shown in Figo 1. 
f ( t )  which is of f inite duration and which w i l l  be referred t o  as a 
shock pulse. Upon the application of the pulse the  mass will experience 
an acceleration x ( t )  and K i l l  undergo r e l a t ive  displacement with respect 
t o  the base, z ( t )  - y( t )  - x ( t ) ,  

as representative of the response, and the s p d g d a m p e r  combination 
thought of a s  a shock i so l a to ro  The mass may represent a u n i t  t o  be 
protected. Two problems may now be stated. 

The base is subjected t o  an acceleration, 

-0 

The absolute maxima of these quant i t ies  (x , zm) may be considered 

(1) If the *!rattle ' 1  space (b) is Limited by external  con- 
siderations, the problem i v s  t o  choose the spring-damper combination 
which provides the least 5 wbile resu l t ing  in a % consistent w i t h  
the available "rattle )' space. 

(2 )  The * ' f r ag i l i t y  level '1, or maximum endurable acceleration 
of the unit, i s  known and the problem is  t o  choose the spring-damper 

thus, making it combination providing the least possible value of 
possible t o  mount the system in the smallcst possib e spaceo ?Y 

It i s  real ized that does not t o t a l l y  characterize the damaging 
capabi l i ty  of the shock f e  5 t by the uni t  since i ts  t h e  h is tory  is 
sometimes qui te  s ignif icant  in t h i s  respect. However, i n  a large 
number o f  case& the sensi t ive elements of the un i t  are su f f i c i en t ly  
r ig id  so t h a t  xm indeed t e l l s  how w e l l  it is  protected. 
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In  many cases the environment from which the package i s  ti?. be  
protected contains several  d i f fe ren t  shocks yl(t) ,  $2(t) ,  ..., yn(t), 
a l l  of which may be assumed t o  be applied with the system a t  rest .  
For each of these there w i l l  be a zm and a xm from which we can 
define the m a x i m a :  i a i  

.. r .. .. .. '1 

With these def ini t ions the two problems stated above remain 
e s sen t i a l ly  the same only now there i s  a muAtiplicity of load condi- 
t ions  and zm and % are replaced by 
be noted t@t ir' and 
C, Le., Xm =m& ( k , 3  and 
and the pulse set  assigned). 

and X, respectively. It should 

= Zm (k,c) (assuming the mass specified 
are  functions o f  the design parameters k and 

I n  t h i s  note the  examples a re  primarily of Type  1 in which the 
acceleration i s  t o  be minimized. 
arguments f o r  the existence o f  both problems can be advanced. 
however, has been fortunate because one of  the  primary a i m s  of the work 
w a s  t o  discover what k b d s  of poorly behaved mr i t  functions exis ted and 
t o  develo?.)echniques, if possible t o  handle them. 
l a t e r  the 
than is Z (k,cIo m 

This choice i s  purely a r b i t r a r y  since 
The choice, 

A s  w i l l  be seen 
(k,c) as a merit function i s  much more ' 'pathological ' '  

Much work i n  engineering synthesis has deal t  with weight, a merit 
function t h a t  i s  independent of the system l o a d s .  The present problem 
has the property that Xm (k,c) is, i n  general, the result o f  one condi- 
t i o n  (pulse) f o r  a given k and c, but  f o r  a d i f fe ren t  k and c it may be 
the result of a different  pulse. It was expected t h a t  t h i s  would give 
r ise  t o  a behavior of Xm (k,c) t h a t  might be d i f f i c u l t  t o  handle by 
exis t ing techniques. 

Another reason f o r  choosing this  problem was t o  demonstrate the 
feas ib i l i ty  of using a dynamics technology in a synthesis problem and 
t o  discover what d i f f i c u l t i e s  might be inherent Fn such an application, 
Usually a dynamic analysis i s  considered solved i f  the time response of 
t h e  system i s  obtained. However, i n  m o s t  cases only cer ta in  aspects of 
the response h is tory  are s ignif icant  t o  t h e  design problem. 
as discussed above cer ta in  maxima may be of interest .  
the important factor my be the number of times a given quant i ty  exceeds 
some number (as i n  fa t igue) ,  or  the length of time required f o r  damping 
t o  a given level,  a n d  so  on. 
response i s  obtained and more o r  l e s s  quantitative judgements are made 
regarding i t s  acceptability. 
must be formalized in to  exp l i c i t  decisio,is. 

For example, 
In other s i tuat ions,  

In  the conventional design process the 

In  a systematic synthesis these judgements 
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SYMSOLS 

A 

Bi 

C19C2 

D 

G 

H(t) 

K19K2 

N 

Q 
R 

R 
S 

*i 

vi 
v 

W 

X 
.. 
m 

zm 

C 

k 

m 

m. 

n 

.- 

1 

a constant of integrat ion 

the magnitude of the ith square pulse 

constants of integrat ion 

a constant of integrat ion 

a constant 

the Heaviside s t ep  function 

constants of integrat ion 

an integer  

a constant 

a constant of integrat ion 

a vector f rom vi t o  Vi+* 

a constant of integrat ion 

the duration of the ith square pulse 

a constant 

a design vector; i= 1 represents the current d e s i g n  

a constant 

the  

the 

the 

the  

the 

greatest  of  i 

grea tes t  of z 

damping coeff ic ient  

. m i  

9. 

spring s t i f f n e s s  

mass 

a move vector 

t h e  damping ra t io ,  c/2m 
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the time a t  which a m a x i m  occurs 

x the absolute displacexent of the mass 

X 

Y 

.. 
the  maximum of <(t) due t o  the  ith pulse 

the absolute displacement of the base 
. m i  

.. 
Y: the ith shock pulse 
-I 

Z the relative displacement, y- x 

z 

z(T),z(T) the  values of z ( t ) , i ( t )  f o r  t = T, the end of 

the  maximum of z ( t )  due t o  the ith pulse 
"i . 

the pulse 

a,p,y,G constants of integration 

0 undamped. c i rcular  frequency 
0 

2 
damped c i rcu lar  frequency 

overdamped pseudo frequency 

wo - n 
0 A J "  

od 0 

A ( P  a f ini te  change i n  cp 

P approximately equals 

SYbJTHESIS FOFMUIATION 

The Design Parameter Space 

In synthesis problems it is  often qui te  useful t o  think of a 
Cartesian space, the coordinates axes of which are the design parameters 
(see Fig. 2).  Thus, each point in the space represents a d i s t i n c t  
design. I n  a given design problem there will be points which represent 
acceptable o r  feas ib le  designs and p o i n t s  which are  unacceFtable, Sore 
desizns are ruled out because o f  natural o r  imposed l i m i t s  on the design 
paraneters themselves; f o r  example, negative spring constants are  ruled 
out o r  there may be a requirement that  damping be sub-crit ical  i n  a 
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dynamics problem, o r  dimensional l imi ta t ions  in a s t ruc tu ra l  problem. 
These constraints, which do not involve the  response of the system t o  
the applied loads, w i l l  be ca l led  side constraintso 

Some designs will be acceptable i n  terms of the  side constraints  
but unacceptable i n  terms of performance, f o r  example, a s t ruc tu ra l  
design tha t  displaces too much o r  simply collapses, or a dynamics 
where some response charac te r i s t ic  i s  unacceptable. These constraints  
wi l l  be called behavior constraints,  

design 

* 
The design space can now be thought of as divided into two sub-sets : 

the acceptable designs and the unacceptable designs. 
them i s  called the composite constraint  surface. 

The surface' dividing 

Associated with each acceptable point i s  a value of the m r i t  
function. 
surface. 
of as that  acceptable design (or  those designs) lying on the m r i t  
surface having the bes t  roerit value. 
t h i s  design has been on the composite constraint  surface, a t  a point 
which, i n  a rough way, can be thought of a s  a tangency point between 
the best  merit surface and the composite constraint  surfaceo 
however, is not necessar i ly  the case; 
i n t e r io r  point of the acceptable region i n  some problem. 

For a single value of t he  merit function the points  form a 
The solution t o  the optimization problem can then be thought 

In  most problems solved so far, 

This, 
the bes t  design may be at  an 

About the Analysis 

The analysis of t he  spring-mass-dampr system i s  qui te  simple 
and uncomplicated f o r  ordinary use but when it i s  t o  be used i n  a 
synthesis, some e f f o r t  must be expended t o  ge t  it in to  a usable form.+* 

U 

+ 

++ 

The acceptable set may be composed of several  d i s jo in t  s e t s o  
in some instances contain one point in which case the problem i s  t o  
f ind t h a t  point and optimization i s  no longer a question. 
ab le  set  may be a n u l l  s e t  which, of course, means t h a t  the problem 
has no solution. 

It might 

The accept- 

I n  the case of N design parameters, the surface i s  the t o t a l i t y  of 
points sat isfying some F(xl, x2, ~3 ..., +) = 0 which is  a sub- 
space C,,l and divides the design space in to  two sub-sets: those points 
f o r  which F e 0 and those points f o r  which F > 0. 
a surface; 
object, which may or  may not  be d i s j o i n t o  

See Appendix A f o r  d e t a i l s o  

In  t h i s  sense it is 
it i s  not a two dimensional object but  ann - 1 dimensional 
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The d i f f e r e n t i a l  equation of the system is: 

.. .I 

m~ + C(X - y) + k(x - y> 0 

taking z = (y - x) : 

C '  k .. .. 
y -  z - - z  m - - 2  m . I o  

or 

with i n i t i a l  conditions : 

.. .. 
Corresponding t o  each pulse, yi(t) there w i l l  be a zi( t )  from which x i ( t )  
can be obtained. 

For the ac tua l  problem only square pulses  with d i f fe ren t  durations 
and magnitudes were used (Fig. 3 ) .  
having several  d i f f e ren t  shaped pulses was mainly the  exploratory nature  
of the investigation, 
the s a l i e n t  fea tures  of the problem. 

The reason f o r  doing t h i s  instead of 

The use of the square pulses adequately illustrates 

Using the Heaviside s tep  function, H(t), the equation can be writ ten: 

I i = 1, 2, ..., n 

where B a d  T. are the magnitude and durztion of the ith pulseo i 1 

The r e l a t ive  displacement maxima occurs where zi(t)  = Oe T h i s  i s  
t rue  whether the m a x i m u m  occurs during the pulse, j u s t  a t  the end of the 
pulse, o r  a f t e r  it has ceased. i s  a matter of taking the 
der ivat ive of the solution f o r  the response mi dur ing  and a f t e r  the pulse, 
solving f o r  the to's fo r  which zi(to) - 0, subst i tut ing the to's in to  the 
response equations. and comparing these m a x i m a  f o r  the maximax o r  g rea tes t  
m a x i m u m  f o r  the i t h  pulseo 
colrrpased (see equation (2)  page 3 10 

So finding z 

Then in order t o  f ind  the  zmi must be 
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.. 
The absolute acceleration, x i s  a somewhat different  matter since 

xi ( t )  i s  discontinuous a t  the end 
;@.e maximum acceleration may occur a t  the end of the pulse y.ithout having 
~ i ( T i )  = 0 .  

$>on peaks during the pulse and a f t e r  the pulse.mmL a l so  be Eompred with 
xi(Ti). 

m i  . .. 
of the square pulse which means tha t  

In  finding the maximum of the acceleration, %. , the accelera- 

These also must be compared t o  find Xm (see equation (1) page 3 ),, 

Synthesis 

The basic method of synthesis chosen f o r  t h i s  problem was  the 
gradient s teep descent---alternate s tep method, This technique i s  shown 
d iagramt ica l ly  i n  Fig. 4 and by a basic flow chart  in Fig. s8 

It consis ts  of moving from an i n i t i a l  acceptable point i n  the 
direction” of the gradient t o  a b e t t e r  design some f i n i t e  distance away. 
This process i s  repeated u n t i l  a constraint  i s  encountered which prevents 
further moves i n  the gradient direction. Then an alternate s tep i s  taken 
which i s  a move more o r  less along the constant merit  curve (o r  surface),, 
,4fter the a l te rna te  s tep a f r e e  (unconstrained) point should have been 
obtained from which a steep descent can be made. The process i s  con- 
tinued u n t i l  no move can be made by e i t h e r  mode a t  whjxh t i m e  an optimum 
i s  said to be achieved’. 
since the gradient points i n  %he direct ion of grea?xst cha?ge it i s  the 
bes t  direction t o  move t o  improve the design. If a move cannot be made 
i n  the best direct ion then a move i s  made which a t  least  does not decrease 
the merit of the design. 

The reasoning behind th i s  tech-nique is  that 

In principle t h i s  method i s  qui te  straightforward, however, it has 
a number of  d i r f i c u l t  points. One of the  first of these t o  be encountered 
i s  the t a c i t  assumption t h a t  one can nave with ease along a constant m e r i t  
c m .  This d i f f i c u l t y  i s  characterized by the  f a c t  t h a t  the m r i t  i s  an 
involved rule f o r  determining the merit associated with a given design. 
This means tha t  moves alons the mcrit curves require, Tn general, a d i f f i -  
c u l t  i t e ra t ion  process. 

Such a drawback i s  even more severe i n  an a l te rna t ive  method knoim 
as the constrainzd yadi.ent technique. 
direction cannot generally be made from a bound point t h i s  method seeks t o  
move i n  the n2xt best direction, the  projcction of -Me gradient on the 
constraj-nt. This method i s  i l l u s t r a t e d  i n  Fig. 6. The reason it i s  more 

Since a move i n  the gradient 

JC I n  t h i s  problem i n  the direct ion of the gradient but  i n  the negative 
sense since the function i s  t o  be minimized. - 

+ For the question of r e l a t ive  m i n i m a ,  see the examnle shown in Fig, 23 . 
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severe f o r  t h i s  nethod i s  t h a t  the projectin2 must be done by i t e r a t ion  
and the projection must be quite exact f o r  the method t.0 work. 
the  i t e r a t i o n  must be carried t o  corpletion before it can be deterpined 
if the move i s  of a usable length o r  i f  it must be shortened (Fig. 7). 
-4 l e s se r  degree of  accuracy i s  required f o r  the a l te rna te  step method as 
will be seen la te r .  These d i f f icu l t ies ,  coupled with the f a c t  that i n  
many problems the constraint  surface i s  more irregular than the merit 
surfaces, made the alternate s tep system seen the  more promising. 

Also, 

* 
I Another d i f f i c u l t y  of  the  gradient-alternate s tep method i s  tha t  

with t h e  "black box" type of function the gradient carmot be obtained 
i n  a closed ana ly t ica l  formo 
f i n i t e  difference method of numerically computinq the gradient, 

This i s  surniounted simply by using a 

From the def ini t ion of the gradient of a function of two  variables: 

The p a r t i a l  derivatives can be approximated by  computing: 

q ( x  + Ax,y) " cp(x,p) 

and 

f o r  smaller and smaller fl x and A y until t he i r  change from the previous 
calculat ion i s  l e s s  than some desired amount. 

~~~ 

i t  There i s  another, perhaps more serious, theore t ica l  deficiency of the 
constrained gradient method a s  it i s  often s t a t e d .  This i s  t h a t  once a 
sect ion o f t h e  composite constraint, surface i s  encountered, it may not 
be le f t .  However, i n  general there is no assurance tha t  the f i n a l  
t rue  optimum design w i l l  l i e  on t h i s  constraint  o r  any of t h e  others  3.5 
they are encountered in order. 
axample see ref. 4). 
as one function then the method i s  theoret ical ly  correct, but t h i s  i s  
usual ly  qui te  diff icul t ,  i f  not impossible. 

This point i s  often overlooked (for  
If the composite constraint  surface can be t reated 
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There is  no rigorous assurance t h a t  t h i s  process will produce the 
When it does  not, t rue  components of the gradient but it usually does. 

other  steps must be taken which will be discussed subsequently. 

After the components of the gradient are determined, there i s  s t i l l  
the question of how far t o  move i n  the  gradient (ac tua l ly  the normal) 
direction. This i s  done by usbig the fact that: 

where f o r  t w o  variables : 

Since the move i s  t o  be made in the direct ion o f  greatest  decrease of  
cp,  d? should be along the normal. This requires  that 

therefore, f o r  small moves A along the normal: 

A Y  154, 

where A cp i s  the  desired decrease i n  cp f o r  the move A ? . 
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Since moves are made i n  f i n i t e  steps along the gradient direct ion 
some d i f f i c u l t i e s  are  encountered i n  a gradient f i e l d  t ha t  changes 
r ad ica l ly  from poS-nt t o  point. 
yields a design point of worse merit than the point being TflOWd from, 
the move can be shortened u n t i l  it y i e l d s  a point of b e t t e r  mri t .  Th i s  
s i tua t ion  is  i l l u s t r a t ed  i n  Fig. 8a. 
has been found t o  work sat isfactor i ly .  

If the move i n  the gradient d i rec t ion  

For shortening a halving process 

I n  the Iltrought' s i tua t ion  (which ac tua l ly  occurs i n  the present 
problem) shown i n  Fig. 8a , a zigzagging of the moves m y  occur as i n  
Fig. 8b . 
continues t o  trend i n  the correct direction, but it is  extremely in- 
e f f ic ien t .  
gradient move vectors and can thus be detected by computing that  angle 
o r  i t s  cosine, 

This zigzag i s  r e a l l y  not a failure of the met'nod since it 

It i s  characterized by a small angle between two successive 

This computation can be performed qui te  simFly by tlrememberifig 1' 

the last  three designs fl, v2, v3. The move vectors are then: 

where Tl i s  the most recent design (see Fig. 9 ). 

undesirable mount o f  zigzag (other angles may, of course, be selected). 
'I'liis c r i t e r ion  requires : 

It was decided beforehand. t h a t  an angle of l e s s  than 90' was an 

which is  a simple calculation, 

It can be noted i n  Fig. 9 that a vector from the oldest  design of 
the three t o  the  newest (or  R = 0, - v3) is  roughly p a r a l l e l  t o  the  
gradient t h a t  w0u.X be obtained d i rec t ly  in the middle of the "trough ( I .  

This then may be an e€fr;.cient direction t o  moveo 

These ideas were incorporated into the synthesis program by f i rs t  
providing a t e s t  f o r  zigzag by t'rernemberingf' designs and then t e s t ing  
the d o t  products of the move vectors. 
move t r ied  i s  v1 + R; if t h i s  i s  successful ( tha t  is, i f  the merit 

If zigzagging occurs the next 
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improves) then a move 
the direction fa i l s  t o  improve the d e s i p  or  a constraint  i s  encountered. 
Whenever the direction fa i ls  t o  improve the design, including the f i rs t  
move, it is  abandoned and a gradient move is  taken. 

+ cx i s  t r i e d  then v', + and so on u n t i l  e i t h e r  

It can be observed t h a t  t h i s  technique is  real ly  an attempt t o  
approximate the average gragient and not ac tua l ly  an abandonment of 
the gradient s teep descent. 

In the problem of the shock i so la tor  i f  im is  taken as the merit 
function, the merit curves f o r  some pulse s e t s w i l l  exhibi t  a property 
we will c a l l  a Itcusp I t ,  A s  w a s  mentioned before, in di f fe ren t  portions 
of the design space im w i l l  be tk r e s u l t  of response m i m a  of d i f fe ren t  
pulses. This shifk w i l l  often be accomplished by an abrupt change in 
direction and magnitude of ths gradient with, technically, the gradien; 
being undefined a t  the cusp, This s i tua t ion  i s  i l l u s t r a t e d  i n  Fig. 10. 

This i s  one case where the f i n i t e  difference method f o r  determining 
the  gradient breaks down, (as, of course, do all methods because it doesnlt 
ex i s t ) .  
no move t o  improve the design can be made i n  i t s  direction. 

The gradient as computed usually points across the  cusp and thus 

The s i tua t ion  is  easy t o  detect  because no move can be made and. a l l  
progress stops. 
t h a t  of the zigzag. 
encountered; if  a neighboring point on the cusp can be found, then these 
two points can be used t o  give a l i n e  running, a t  least  f o r  a distance, 
along the cusp 11 groove 1 ' .  

The solution t o  the  d i f f i c u l t y  i s  somewhat s i m i l a r  t o  
Once progress stops a point on the cusp has been 

T h i s  second point i s  easy t o  ge t  since a l l  gradients near t h i s  
kind of a cusp are directed toward the cusp "groove I t .  

points  about the first cusp point are t r i e d  i n  a more or  less random 
fashion u n t i l  one which i s  merely i n  the acceptable region is  found, 
Gradient moves are then made from this point  which u s w l l y  lead back 
t o  the "groovett and a cessation of a l l  progress. The vector between 
these two points i s  then used f o r  the next move, The sense of t he  
vector i s  obtained by considering which of  the two cusp points has the 
b e t t e r  m r i t .  

So several  

The procedure i s  shown p i c t o r i a l l y  i n  Fig. 11, 

This  method i s  again an approximation t o  what might be thought of  
i n tu i t i ve ly  as the gradient of the  cusp (if t h i s  offends the mathematical 
sensibi l i t ies ,  it i s  a t  l e a s t  a vector i n  the direct ion we want t o  go)*  

* A s l i g  t y d i f fe ren t  form of t h i s  method has been used previously by  
Fedder u 5 , 
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The przviously mentioned d i f f icu l ty  of moving along the constant 
merit curve was handled in the fol lowing manner. 
(gradient direct ion)  t o  the curve can be computed, i t s  components may 
be used t o  give the tangent t o  the curve. I n  a typ ica l  s i tua t ion  one 
direct ion along t h i s  tangent leads into the unacceptable region and the 
other away from it (Fig. 1 2 ) .  
in the l a t t e r  direct ion would be a move along the constant wr i t  curve. 
For most cases, however, the curve i s  not so w e l l  behaved. If the 
curve i s  concave (Fig. 13), such a move w i l l  usually lead t o  a point of 
be t t e r  merit than the bound point a n d  there is  no reason t o  attempt t o  
f h d  the curve of the bound point . After such a move gradient moves 
can be resumd until a constraint  i s  again encountered. 

Since the normal 

If the curve were very f l a t  then a move 

If the curve i s  convex, (Fig. 14 a,b,c) the tangent move will lead 
t o  a point of worse merit than tk bound point. 
merit curve, small moves perpendicular t o  the tangent can be made u n t i l  
one of three th inzs  occur. 
merit curve i s  passed through (Fig. Up). 
the  tangent move and trying again. 
d i rec t ion  show a reduced m r i t  (Fig. lhb). 
shortening the tangent and t r y i n g  again. 
bound point i s  passed through or h i t  exactly (very rare).  
considered a success and gradient moves are made from t h i s  point (Fig. 

I n  order t o  f ind the 

1) A constraint is  encountered before the 
This calls  for shortening 

This a l s o  c a l l s  f o r  
3 )  The merit curve of the 

2 )  Moves in the  perpendicular 

This is  

14 c). 

It i s  easy t o  see that t h i s  process w i l l  seldom r e s u l t  in a move 
which is  t ru ly  along the m r i t  curve. 
the tangent are qui te  smll the point w i l l  be close to ,  but seldom on 
the curve. On the other hand, there  seems t o  be no strong reason t o  
ask f o r  such precision; what r e a l l y  i s  accomplished i s  a move which ge ts  

i n s i d e "  the convex merit curve. The complete flow diagram and 
computer l i s t i n g  f o r  the mthod described above i s  given in ref .  6. 

If the  s teps  p r p n d i c u l a r  t.0 

This section presents several  i l l u s t r a t ive  cases of the operation 
of the synthesis program described above. 
as synthesis paths superimposed on the family of merit curves and con- 
straint s. 

These are presented graphically 

The example problems presented are of two types; Find the spring 
s t i f fnes s  k and damping coefficient c such t h a t  the system will i so l a t e  
a mass m from a set of base induced acceleration shocks in the form of 
square pulses having a magnitude B i  and a duration T i ,  i = 1,2,. . .no 
The shock protection i s  to  be such that 

. Type 1 problem: the maximum of the absolute acceleration maxim 
is  t o  be minimized w h i l e  having the maximum of the magnitudes of 
the relative displacenlent maxim less than a cer ta in  value. 



Type 2 problem: the raaximum of the nragnitudes of the r e l a t i v e  
displacemnt maxima i s  t o  be minimized while having the maximum 
of  the absolute accelerat ion maxima less than a ce r t a in  valus. 

I n  addition there  may izl some cases be limits on the range of values 
which k and c m y  take. 

Table I gives tb case designation and figure number sharing the  
synthesis path, the ident i f ica t ion  of the pulse s e t  involved, the con- 
s t r a i n t s  placed upon the problem, and the F n i t i a l  and final values of 
k, c and the m r i t .  

Table I1 l ists  the magnittde and duration of each pulse fo r  the 

I n  viewing Figs .  15, 16 and 18-25 it should be borne in mind 

pulse sets  used in t b s e  examples. 

that the mrit curves and behavior constraint  curves a r e  sham only 
for the purpose of demonstrating the modes of o p r a t i o n  of the syn- 
t h e s i s  program. 
were e a s i l y  obtainable, the problem would reduce t o  one of plot t ing 
and the selection of the optimum could be done by  inspection. 

I n  practice they  would not  be known; indeed, if they 

The curves could be obtained only by "gridding '1 the design 

In addition, tb grids were 
space. 
time as did the ac tua l  synthesis paths. 
run a f t e r  the synthesis had been completed so t h a t  the per t inent  region 
of t& space was already knm. 

This required on the  average about ten  times as much computer 

I n  the i l l u s t r a t i o n s  which follow, gradient moves which should 
be normal t o  the m r i t  curves, will not appear to be so. 
t o  the severe d i s to r t ion  of the scales  which w a s  necessary for c lar i ty .  

T h i s  is due 
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I Set  I 

= 2000 in/sec 2 T, = 0,001 seco 

B, = 200 in/sec2 T, = 0.01 sec. 

B, = 2000 in/sec2 T, = 0.01 sec, 

Set I1 

B, = 1000 in/sec2 

T, = 0.01 sec. 

T~ = 0.05 sec. 

T A B U  I1 
WISE SETS 

Pulse Set  I contains a dominant pulse (B3,T3) which r u l e s  the behavior 
of the system i n  the entire region of in te res t .  
syntheses depicted in  Figs. 15 and 16 would be unaffected by the omission 
of pulses 1 and 2. 

In  other  words the 

Figures 15 and 16 show two paths, each from a different  s t a r t i ng  
design, f o r  the solut ion of the Sam problem. 
e f f ec t  is qui te  in evidence. The moves from about k = 990 t o  810, from 
800 t o  640, 620 t o  580 and from 560 t o  9 0  are  a l l  gradient approximate 
moves resul t ing from the zigzag feature  of t he  program. 

I n  Fig. 15 the zigzag 

The designs indicated by smll  c i r c l e s  i n  the drawings a re  points 

and/or constraints i n  the course of the synthesis but the  points 
from which gradient moves were  taken; other points were checked f o r  
merit 
circled required about ten  times as much computational t i m  because of 
the f i n i t e  difference gradient calculation, as did the points mrely 
checked. 

The synthesis path sham in Fig. 16 does  not encounter the  zigzag 
simply because the in i t ia l  design and subsequent path do not cause it t o  
pass through the region of rap id ly  changing gradient., 
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The solution f o r  the problem shown in Figs, 1s and 16 is  a t rue  
tangency between the acceleration merit curves and the displacement 
constraint. A s  Will be seen i n  l a t e r  examples, the imposition of side 
constraints  can change t h i s  s i tuat ion,  

Figures 18 through 23 deal  with pulse Set I1 i n  which there i s  not 
a dominant pulse which can be said a p r io r i  Lo control  the design, 

The wave l i ke  form of  the merit curves i n  the subsequent f igures  
may seem surprising---for a spring s t i f fness  of about 700, f o r  example, 
the addition of damping up t o  about 15 improves the  design, fur ther  
damping makes the design worse up t o  about 55 and then damping improves 
the design again up t o  72, 
suddenly causes the design to  deteriorate and does so from C = 72 on up. 
The reason f o r  this chain of events can be seen i n  Fig, 17 in which are  
plotted the ac tua l  acceleration response curves of the system f o r  various 
values of damping, 

A t  this point the addition of damping 

The optimum f o r  the problem shown in Figs. 18 and 19 i s  again a 
The path f o r  Fig, 18 involves a few zigzags followed t rue  tangency, 

by an ex t raord inar i ly  lon approximate move. T h i s  long approximate 
move will occur when the k happens t o  be j u s t  right. 

The synthesis path shown i n  Fig. 19 involves the cusp move, 
The "groove 1' i n  t h i s  problem is  f a i r l y  s t r a igh t  and therefore the 
first cusp direct ion suf f ices  t o  move the design t o  a region where there 
i s  no fu r the r  d i f f i c u l t y  with the CUSP. 

Figure 20 shows a problem which i s  s i m i l a r  t o  the one shown in 
Figs, 18 and 19  but whereas the latter had no act ive s ide constraint  
the former does, 
solut ion has changed from a t rue  tangency point t o  a point of i n t e r -  
section between constraints,  
r e s t r i c t e d  i n  t h i s  problem a second path i s  not shown. 

By moving the upper bound on c from 100 t o  30 the 

Since the acaeptable region is  so 

Figures 2 1  and 22 show the problem with a more severe r e s t r i c t i o n  
on displacemnt  and no act ive side constraints. This change causes 
the so lu t ion  t o  l i e  a t  a cusp point. 
j o i n t l y  control  the  optimum design, 

T h i s  means t h a t  the pulses 

It was observed i n  the above figures that the problem would have 
a r e l a t ive  minimum i f  a lower bound were placed on the spring stiff- 
ness above K = 400. The t rue  
optimum occurs at K = 650.0, C - 20,7 with a merit of 1008,l and i s  
due t o  path A, 

This s i tua t ion  i s  shown i n  Fig. 23, 

Path B yields a re la t ive  minimum of 1066e8. 
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This somewhatartificially induced r e l a t i v e  minimum problem can 
be solved (i.e., the absolute minimum found) by  using multiple paths- 
the degree of confidence increasing with the number of paths which lead 
t o  the same minimum. 

Figures 24 and 25 are the reverse, so t o  speak, of the problem 
shown i n  Fig. 20. 
minimized and a constraint  i s  placed on the  accelerat ion (type 2 problem). 
The acceleration l i m i t  chosen f o r  Figs, 24 and 25 i s  the value of the 
minimum found in Fig. 20. 

In  these the max im re l a t ive  displacement is t o  be 

As expected, t he  minimum r e l a t ive  displacement found by the 
syntheses shown i n  Figso 24 and 25 i s  the same as the upper Wt placed 
on the  displacement f o r  Fig. 20. 

There is nothing really profound in t h i s  r e s u l t  except that due 
t o  the re la t ive  s implici ty  of displacemnt  a s  a writ function it 
provides a quick method of making :'confidence checks:' after the 
original  problem has been run once. 

C ONCLU SI9N S 

This work has successfully demonstrated the f e a s i b i l i t y  of  applying 
the synthesis concept t o  a problem in which the technology is dynamics. 
A t  the outset it was c l ea r  t ha t  i f  merit and constraint  f l r u l e s "  could 
be identified,  problems i n  dynamics could be dealt with f r o m  the design 
parameter space viewpoint. However, there were two general areas  which 
required investigation3 (1) The p rac t i ca l  question of e x p l i c i t  expres- 
sion of the sa l ien t  fea tures  of a dynamic ana lys i s  needed exploration. 
( 2 )  
present ideas of synthesis were in question. 
known if these functions were s ingle  valued, continuous, and without 
regions of zero gradient, 

The properties of merit and constraint  functions required by the 
In other words, it was not  

The investigation of these questions has lead t o  the  development of 
a capabi l i ty  t o  optimize a two paramter  dynamics problem6 Specifically,  
the problem solved is:  

Given a single-degree-of-freedom, spring-damper mass system t o  the 
base of which are applied n square pulses (each applied With the s y s t e m  
a t  r e s t )  of  d i f fe ren t  magnitudes and/or duration, f ind the spring-damper 
combination which, within upper and lower. bounds on s t i f f ene r  and damping: 

1) Causes the mass t o  experience the l e a s t  m a x i m u m  absolute 
acceleration due t o  any pulse while providing a maximum 
re l a t ive  displacement between the  mass and the  base less 
than a prescribed value, 
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or 

2) causes the l e a s t  m a x i m u m  re la t ive displacement while providing 
a maximum absolute acceleration of the mass l e s s  than a pre- 
scribed value. 

The program requires as inputs : 

mass 
the value of the behavior constraint (Le.,  displacement 

an i n i t i a l  acceptable des ign  

three move increnaent s i z e s  

the constraint  tolerance 
the zigzag angle c r i t e r i o n  

the tolerance f o r  the gradient routine 
the pulse data 

design parameter bounds. 

or acceleration f o r  problem 1 and 2, respectively) 

h e  t o  the va r i e ty  of f lpathologicalff  features  which t h i s  problem 
presented, it is  f e l t  t h a t  the capabili ty developed t o  cope with them w i l l  
serve t o  optimize a very la rge  c l a s s  of general two dimensional problems. 
T h e  development of  techniques f o r  handling these unusual features  has been 
an important r e su l t  of t h i s  work. 

The fea ture  of a completely bounded acceptable region (as shown in 
Figs. 2k and 25) has not always been expected. 
of the problem, it was not  necessary t o  deal with t h i s  i n  a formal way, 
however, i t s  exposure has lead t o  some new thoughts on the question of 
f inding an i n i t i a l  design. One such thought i s  the idea of temporarily 
defining the constraining behavior function a s  a pseudo merit  function. 
Then choosing an initial design which s a t i s f i e s  the design parameter bounds, 
running the synthesis program until th i s  pseudo merit function i s  below the  
constraining valueo The resu l t ing  design will then l i e  inside the bounded 
acceptable regiono 

Due t o  the low dimensionality 

The other unusual fea tures  were an<maalies of the  gradient f i e l d  of  
the meri t  function. The r ap id ly  changing but  continuous gradient f i e l d  
which causes the zigzagging o f  gradient moves was dea l t  with i n  a manner 
which attempts, i n  a sense, t o  move along the center l i n e  of the f t t roughf l  
of the function. The discontinuous gradient f i e l d  caused b y t k  changing 
of dominance from one pulse t o  another w a s  dea l t  with by a similar method. 
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The recognition and solution of these s i tuat ions,  when they occur, 
has l e d  t o  the development of methods which involve an elementary so r t  of 
learning process. The program i s  provided with the capacity t o  remmber 
pa r t  of the h i s to ry  of the design path i n  which it is  current ly  involved. 
It then evaluates t h i s  Itexperience" and makes decisions based upon i t s  
evaluation. 
i s  f a i r l y  rudimentaryo Any experience gained In one problem is  current ly  
carried over t o  the next only by the operator of the program. 
of providing the capacity for gaining experience i n  synthesis problems 
opens a wide area of investigation i n  which automated redesign decisions 
can be mde with the benefi t  of more information than j u s t  t h a t  available 
a t  the current des igno  

Admittedly t h i s  memory is  qui te  s h o r t  and the decision process 

The idea 

The scope of the current capabi l i ty  can be broadened by including 
the analysis of  more types of pulses. 
could be handled by providing a routine f o r  numerkally integrat ing the 
Duhamel in tegra l  and selecting the maxima from the resu l t ing  response. 
This would require a mch longer analysis time than does the current 
mthod but would be accompanied by an attendant increment in generality. 

I n  fact, a s e t  of a rb i t r a ry  pulses 

Shor t  of such generali ty,  routines can be constructed which could 
analyze pulses such a s  semi-sine, ramp, over-pressure, e tc .  The synthesis 
could then handle a s e t  of  applied shocks which contained a va r i e ty  o f  
f o m s  

Another d i rec t ion  i n  which general i ty  can be gained is  i n  an increase 
i n  dimensionality. The single degree of freedom systems may have more 
than two design parameters. For example, the spring may be nonlinear of 
the form F = k, x + k, x 1 x 1 
device. 
t o  characterize i t s  actiono 

o r  be piecewise l i nea r  a s  w i t h  a snubbing 
The damper may also be nonlinear requiring more than one parameter 
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APPENDIX A 

The d i f f e r e n t i a l  equation of the system shown in Figure l i s :  

where f o r  the square pulses considered: 

.. 
Yi(t) - B i  0 < t  - c Ti 

i = 1, 2, ... N 

= o  T i < t  < + a ,  (A2 

T a k i n g  : 

2 C - - 2n k 
m 0' m - = w  y - x  = z, 

then : 
2 .. 

z. + 2n zi + wo 
,I 

z - $ t )  (A3 

The desired quant i t ies  are:  

.. .. 
X = = I x i w  I i = 1, 2, O . .  N 
. m i  

I n  what fo l lows  the subscript  i w i l l  be dropped. It should be kept 
i n  mind however. t h a t  fo r  synthesis purposes what i s  ul t imately needed are 
the values of X, and Zm. 

'm 

The solution of (u) depends upon the r e l a t i v e  values of wo 
and no 
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Subcritical Damping (n e a,), t < T - 
B z(t) = ent (cl cos w t + C, sin wAt> + 7 
w A 

0 

where 
2 2 2 

w - a  - n  A 0 

C, and C2 may be determined from: 

z(0) = 0 

i(0) - 0 

which results in: 

n B (cos "At + - sin "At) + -2 
B 

15 
0 

*A 
2 a ( t )  = " 

15 
0 

2 

2 2 
n 

A 

B15 
(1 + -) sin OA t A ,=nt ;I(t) = - 

63 w 
0 

2 n 

A 

B15 A 3nt 
2 2 A ;;'<%I - e (1 + -> (aA cos w t - n sin wAt) 

0 0 
0 

For the maxima of  z: 

2 B wA +to n 

A 
- 2 e (1 ++  sin OA to - 0 

w w 
0 

Nn < T n to = 0, w , 0.. - 
A aA - 

(A9 



where T is the duration of  the pulse. 

The r e l a t ion  (A101 indicates: 

in order t h a t  a maximum may Occur during the pulse. 

Substi tuting (A10) i n t o  (A6) 
nnN -- 

e y o ~ ~  
N + 1  B e ( to )  - - 2 [ 1 + (-1) 

w 
0 

which is greatest f o r  N - 1 

For the  maxima of g ( t ) ,  t < T ;  from (As) and the fact that: - 

-1 &A where cp - - t an  - n o  



o 2 tano1 (-i-) A 
< T  - 0. A 

Substituting in to  (A13) 

which reduces t o  

g, .. = B [ I +  e - n t o ] t  0 -  < T  

. .. 
However, the  maximum may occur a t  t = T i n  cases where 

because x ( t }  i s  discontinuous a t  T (see Fig. 17). 

z(t) becaise i ( t )  i s  continuous a t  T. 

x (T)  f 0 
This i s  not true of 

8 *@ 

Subcr i t ica l  Damping t > T 

(K1 cos o tf + K, s i n w  t ' )  
-nt f 

A A z ( t f )  - e 

where t - t ' + T, 

K, and K2 may be determined from: 

n B 
A eaT (cos w T + - sin w T )  + -z z(T)  - - 

A "A % 
2 

w 
0 

2 n B o  
2 ( 1  + ? I  s i n w  T i ( T )  = 

2 A 
0 63 
0 0 

which corn from (A6),  (A7)* 
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This r e s u l t s  in:  

&T) + na(T) 

A K2 - w 

Adopting the notation 
2 G - 2 n&T) + coo x(T) (A23 > 

and dropping the primes on t ( ime* ,  considering t h i s  a new problem with 
new ini t ia l  conditions) 

For the  m a x i m a  of zs t > T: 

. ni(T) +uo2 z(T) 
0 = z(T)  COS wA to - ( 0 ) s i n  wA to (A28 1 

A 

1 uA 
2 

1 -1 

"A nz(T) + wo z(T)  
to - - t an  
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n When 1 > - the m a x i m a  of z t h a t  occur during O <  t < T w i l l  be 

greater  than o r  equal t o  the maxima f o r  t > T. If - 1 then 

the maximum occurs f o r  t > T. 

If n = 0 (A30) reduces t o  

- wAT 
OA T- 
n -  

.. 
For the maxima of x, t > T: 

b .. 
x (to) - 0 

4,lt . .. 
dt) - - e [ (wAQ + nG) cos aAt + (o G - nQ) sin 

t ] A 

0 = <w,Q + nG) COS oA to - (nQ - wAG) s in  o A 0  t (A33 

1 
1 u A Q +  rd; 
w tan'-1 [ nQ - wA G to = - 

A 
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If to from equation (A341 i s  l e s s  than zero, i t s  value must be adjusted 

by the add.ition of r .  n 

A 

1 
-nt .. 

= - e [Q sin oA to - G cos 0 t 
:m A 0  

I 

The acceleration a t  the end of the pulse from equation (A13) i s :  

2 
n B o  

A [(l + --,)sin (0 T + $I)] eonT f ( T )  = B -- A i  0 
0 A 0 

I f n = O :  

.. O O  Xm = 2B sin - 2 ’  t > T  

Cr i t i ca l  Damping (n = oo) t - < T 

B z ( t )  = (a + P t )  eat + - 2 
63 
0 

a and p may be determined from: 

! z(0) = 0 

d(0) - 0 
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B B a P I - = -  - 
2 2 

w n 
0 

B B 
0 n 

p I - -  = - -  
0 

Theref ore : 

-nt 1 z ( t )  = - B [1 - (1 + n t )  e 
2 n 

Equation (A42) shows t h a t  no m a x i m u m  of z (t) may occur during 0 et TO .. 
For the m a x i m a  of x t -cT 

... 
x ( t >  = - B [n2t ent - 2 n e-nt] 

-nt 
2 onto 0 0 = n t o e  - 2n e 

2 - < T  n -  

.. 
= B[1 - em2 (1 - 2)]  = lo13!?l4i3 t m  

2 - C T  n -  

C r i t i c a l  Damping t > T 

y and 6 may be obtained from the  i n i t i a l  conditions: 

(A47 1 



z ( T )  - 2 [l - (1 + n T )  eWT ] - 
I1 

-nT &T) = BT e 

y = d T )  

6 = k ( T )  = n z ( T )  

From which (dropping the primes on t): 

i ( t )  = {l(T)  - [ n l ( T )  + n2z (T)] t} cent (A!%) 

g(t) = - c(t) = {n2 d ( T )  + n z(T)] t - p n  i ( T )  + n2x(T)]} ennt 

(ASS 1 

For the maximum z :  

0 = i(T) - [n i ( T )  + n2z(T)] to 

P & T I  
to n l ( T )  + n2Z(T) 

-n t - 2- (1 -PT) e 0 
2 n zm 
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.. 
For the maximum of x : 

.. . 
x = - eat {[ 2 n2i(T) + n31(T)]-[n3i(T) + n4z(T)]t + [n2i(T) + 

0 = 3i(T)  + 2n z(T) - [n &T) + n2z(T)] to 

I 3; (T) + 2x1 z(T) 

n i(T) + n2z(T) 

The acceleration at the end of the pulse is: 

C(T) = - {[ n2b(T) + n3z(T)] T - [ 2n i (T)  + n2z(T)]} eqT 

(A62 1 

Overdamped (n > a,), 0 < t < T - 

where : 
2 2 2 

od 0 
= n - w  w 

A and D may be determined from: 

z(0) = i ( 0 )  = 0 

2 

od wo 
0 



Then 

sinh "odt ] } (A651 z ( t )  - - B (1- e -nt [cosh u o d t  + - n 
Ood 2 

w 
0 

1 C O B  od -) Sinh t n2 B 
2 2 

w 
0 

.. 
x = B - L(t) . 

. e .  x = -  B eont 
2, sinh wod t - 2n ood cosh wodt] 

Ood 

For the maximum of  z ( t ) :  

0 = sinh wOd to 

which indicates t ha t  z ( t )  has no maximum 0 < t - e To 
For the  maximum of & t )  : 

2 2 ) s b h  wOd to - 2n o cosh o t 0 = (n + wod od od. o 

= t a n h w o d  t < 1 

2n w 

2n "od 

n + w  
2 2 

od 

Od ) s T  tanh-' 
( 2  2 

U 

od od n +a t 0  w 

2n Ood > 1 no maximum occurs f o r  t e To If 2 2 -  
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The acceleration a t  the end of t he  pulse: 

-nt 

od 
$(T) = B (1 - - e [aod cosh w T = n Sinh mod T I }  (A731 od 0 

Overdamped t > T  

z ( t1 )  - e =ntt (S cosh w o d t *  + R sinh wodtf)  

For the  i n i t i a l  condition: 

(1 - eaT [cosh wodT + - n sinh WodT ] } (4.75) 0 
z(T) - 

od 
2 

w 
0 

2 o B  
Od 

) sinh wod T ] 2 
B(T) - e-nT [( - 

2 
Oo @O 

S = z(T) 

i (T)  + nz(T) 

&od 
R =  

from which (again dropping the primes on t )  : 

sinh w o d t  ] z(t) = e*t [z(T) cosh oodt + l ( T )  + nz(T) 

@od 

2 
o a(T) + ni(T) . 

) sinh w o d t  + z(T) cosh wodt 
od w 

i ( t >  = e-nt {- ( o 

.. 
;(t) - = x ( t )  = e-nt [V s inh  co t - W cosh mod t]  (A81) od 



33 

Where : 

V v -  
od 0 

For the maximum of  z : 

WOd z(T) 
2 = tanh uod < 1  

w z(T) + nL(T) 
0 

1 
w H(T) 

I -  ' tanh-' od 
t0 u) od [ w;z(T) + na(T) 

w l(T) 

o z(T) + n;(T) 
> 1 there is  no m a z i m u m  f o r  t > To od 

I f 2  - 
0 

6. 

For the maximum of x : 

Ood v + llw - tanh aod to nV + uod W 

C W o d  
+ "1 nV + coed W 

to = - tanh-' 
od w 
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t =  y-x 

Figure 1. The Simple System 
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Figure  2. Design Parameter  Space, N = 3. 
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Figure  3. The Square Pulse  

F igure  4. The Gradient  Alternate Step Method. 
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DESIGN PARAMETER - A 

Figure  6. The Constrained Gradient Method. 

Figure 7. Constrained Gradient  Method, Move too Long. 
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Figure 8. The Zig-Zag Situation. 



40 

m 

a 
I 

k! 
W 
I 

e 3 
z 
(3 

W 
0 

5 

m 
I 
a 
W c 
W 
I 
Q 

I 
2 
(3 
v) 
W 
0 

- 

DESIGN PARAMETER - A 

THE ZIG-ZAG 
GR A 01 E NT 
APPROXIMATION 

Figure 9. The Zig-Zag Vectors. 
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'I GRADIENT I' 

DESIGN PARAMETER A 

Figure 10. The Cusp. 
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Figure  11. The Cusp Move. 
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DESIGN PARARAMETER - A  

Figure  12. The Tangent. 
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DIRECTION OF 

DESIGN PARAMETER - A  

Figure 13. Concave Merit .  
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Figure  15. Design Path, Case  A. 
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Figure 16. Design Path, Case B 
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Figure 17. Acceleration Response. 
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Figure  18. Design Path, Case C 
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Figure  19. Design Path, Case  D 
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Figure 20. Design Path, Case E. 
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Figure  21. Design Path, Case F. 
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Figure 22. Design Path, Case G .  



5 4  

Figure 23. Design Paths ,  Cases  H and J. 
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Figure 24. Design Path, Case K. 
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C+ 

Figure 25. Design Path, Case L. 

NASA-Langley, 1964 CR-55 


